Logic
Did you know...
SOS believes education gives a better chance in life to children in the developing world too. Sponsoring children helps children in the developing world to learn too.
Logic is the study of the principles of valid inference and demonstration. The word derives from Greek λογική (logike), fem. of λογικός (logikos), "possessed of reason, intellectual, dialectical, argumentative", from λόγος logos, "word, thought, idea, argument, account, reason, or principle".
As a formal science, logic investigates and classifies the structure of statements and arguments, both through the study of formal systems of inference and through the study of arguments in natural language. The field of logic ranges from core topics such as the study of validity, fallacies and paradoxes, to specialized analysis of reasoning using probability and to arguments involving causality. Logic is also commonly used today in argumentation theory.
Traditionally, logic was considered a branch of philosophy, a part of the classical trivium of grammar, logic, and rhetoric. Since the midnineteenth century formal logic has been studied in the context of foundations of mathematics, where it was often called symbolic logic. In 1879 Frege published Begriffsschrift : A formula language or pure thought modelled on that of arithemetic which inaugurated modern logic with the invention of quantifier notation. In 1903 Alfred North Whitehead and Bertrand Russell attempted to establish logic formally as the cornerstone of mathematics with the publication of Principia Mathematica. However, except for the elementary part, the system of Principia is no longer much used, having been largely superseded by set theory. At the same time the developments in the field of Logic since Frege, Russell and Wittgenstein had a profound influence on both the practice of philosophy and the ideas concerning the nature of philosophical problems especially in the English speaking world (see Analytic philosophy). As the study of formal logic expanded, research no longer focused solely on foundational issues, and the study of several resulting areas of mathematics came to be called mathematical logic. The development of formal logic and its implementation in computing machinery is fundamental to computer science. Logic is now widely taught by university philosophy departments, more often than not as a compulsory discipline for their students, especially in the English speaking world.
Nature of logic
Form is central to logic. It complicates exposition that 'formal' in "formal logic" is commonly used in an ambiguous manner. Symbolic logic is just one kind of formal logic, and is distinguished from another kind of formal logic, traditional Aristotelian syllogistic logic, which deals solely with categorical propositions.
 Informal logic is the study of natural language arguments. The study of fallacies is an especially important branch of informal logic. The dialogues of Plato are a good example of informal logic.
 Formal logic is the study of inference with purely formal content, where that content is made explicit. (An inference possesses a purely formal content if it can be expressed as a particular application of a wholly abstract rule, that is, a rule that is not about any particular thing or property. The works of Aristotle contain the earliest known formal study of logic, which were incorporated in the late nineteenth century into modern formal logic. In many definitions of logic, logical inference and inference with purely formal content are the same. This does not render the notion of informal logic vacuous, because no formal logic captures all of the nuance of natural language.)
 Symbolic logic is the study of symbolic abstractions that capture the formal features of logical inference. Symbolic logic is often divided into two branches, propositional logic and predicate logic.
 Mathematical logic is an extension of symbolic logic into other areas, in particular to the study of model theory, proof theory, set theory, and recursion theory.
"Formal logic" is often used as a synonym for symbolic logic, where informal logic is then understood to mean any logical investigation that does not involve symbolic abstraction; it is this sense of 'formal' that is parallel to the received usages coming from " formal languages" or " formal theory". In the broader sense, however, formal logic is old, dating back more than two millennia, while symbolic logic is comparatively new, only about a century old.
Consistency, soundness, and completeness
Among the valuable properties that logical systems can have are:

 Consistency, which means that none of the theorems of the system contradict one another.
 Soundness, which means that the system's rules of proof will never allow a false inference from a true premise. If a system is sound and its axioms are true then its theorems are also guaranteed to be true.
 Completeness, which means that there are no true sentences in the system that cannot, at least in principle, be proved in the system.
Not all systems achieve all three virtues. The work of Kurt Gödel has shown that no useful system of arithmetic can be both consistent and complete: see Gödel's incompleteness theorems.
Rival conceptions of logic
Logic arose (see below) from a concern with correctness of argumentation. Modern logicians usually wish to ensure that logic studies just those arguments that arise from appropriately general forms of inference; so for example the Stanford Encyclopedia of Philosophy says of logic that it "does not, however, cover good reasoning as a whole. That is the job of the theory of rationality. Rather it deals with inferences whose validity can be traced back to the formal features of the representations that are involved in that inference, be they linguistic, mental, or other representations" (Hofweber 2004).
By contrast, Immanuel Kant argued that logic should be conceived as the science of judgment, an idea taken up in Gottlob Frege's logical and philosophical work, where thought (German: Gedanke) is substituted for judgement (German: Urteil). On this conception, the valid inferences of logic follow from the structural features of judgements or thoughts.
Deductive and inductive reasoning
Deductive reasoning concerns what follows necessarily from given premises. However, inductive reasoning—the process of deriving a reliable generalization from observations—has sometimes been included in the study of logic. Correspondingly, we must distinguish between deductive validity and inductive validity (called " cogency"). An inference is deductively valid if and only if there is no possible situation in which all the premises are true and the conclusion false. The notion of deductive validity can be rigorously stated for systems of formal logic in terms of the wellunderstood notions of semantics. Inductive validity on the other hand requires us to define a reliable generalization of some set of observations. The task of providing this definition may be approached in various ways, some less formal than others; some of these definitions may use mathematical models of probability. For the most part this discussion of logic deals only with deductive logic. Deductive argument follows the pattern of a general premise to a particular one, there is a very strong relationship between the premise and the conclusion of the argument.
History of logic
Several ancient civilizations have employed intricate systems of reasoning and asked questions about logic or propounded logical paradoxes. In India, the Nasadiya Sukta of the Rigveda ( RV 10.129) contains ontological speculation in terms of various logical divisions that were later recast formally as the four circles of catuskoti: "A", "not A", "A and not A", and "not A and not not A". The Chinese philosopher Gongsun Long (ca. 325–250 BC) proposed the paradox "One and one cannot become two, since neither becomes two." In China, the tradition of scholarly investigation into logic, however, was repressed by the Qin dynasty following the legalist philosophy of Han Feizi.
The first sustained work on the subject of logic which has survived was that of Aristotle. The formally sophisticated treatment of modern logic descends from the Greek tradition, the latter mainly being informed from the transmission of Aristotelian logic.
Logic in Islamic philosophy also contributed to the development of modern logic, which included the development of " Avicennian logic" as an alternative to Aristotelian logic. Avicenna's system of logic was responsible for the introduction of hypothetical syllogism, temporal modal logic, and inductive logic. The rise of the Asharite school, however, limited original work on logic in Islamic philosophy, though it did continue into the 15th century and had a significant influence on European logic during the Renaissance.
In India, innovations in the scholastic school, called Nyaya, continued from ancient times into the early 18th century, though it did not survive long into the colonial period. In the 20th century, western philosophers like Stanislaw Schayer and Klaus Glashoff have tried to explore certain aspects of the Indian tradition of logic. According to Hermann Weyl (1929):
Occidental mathematics has in past centuries broken away from the Greek view and followed a course which seems to have originated in India and which has been transmitted, with additions, to us by the Arabs; in it the concept of number appears as logically prior to the concepts of geometry.
During the medieval period, major efforts were made to show that Aristotle's ideas were compatible with Christian faith. During the later period of the Middle Ages, logic became a main focus of philosophers, who would engage in critical logical analyses of philosophical arguments.
Topics in logic
Syllogistic logic
The Organon was Aristotle's body of work on logic, with the Prior Analytics constituting the first explicit work in formal logic, introducing the syllogistic. The parts of syllogistic, also known by the name term logic, were the analysis of the judgements into propositions consisting of two terms that are related by one of a fixed number of relations, and the expression of inferences by means of syllogisms that consisted of two propositions sharing a common term as premise, and a conclusion which was a proposition involving the two unrelated terms from the premises.
Aristotle's work was regarded in classical times and from medieval times in Europe and the Middle East as the very picture of a fully worked out system. It was not alone: the Stoics proposed a system of propositional logic that was studied by medieval logicians; nor was the perfection of Aristotle's system undisputed; for example the problem of multiple generality was recognised in medieval times. Nonetheless, problems with syllogistic logic were not seen as being in need of revolutionary solutions.
Today, some academics claim that Aristotle's system is generally seen as having little more than historical value (though there is some current interest in extending term logics), regarded as made obsolete by the advent of sentential logic and the predicate calculus. Others use Aristotle in argumentation theory to help develop and critically question argumentation schemes that are used in artificial intelligence and legal arguments.
Predicate logic
Logic as it is studied today is a very different subject to that studied before, and the principal difference is the innovation of predicate logic. Whereas Aristotelian syllogistic logic specified the forms that the relevant part of the involved judgements took, predicate logic allows sentences to be analysed into subject and argument in several different ways, thus allowing predicate logic to solve the problem of multiple generality that had perplexed medieval logicians. With predicate logic, for the first time, logicians were able to give an account of quantifiers general enough to express all arguments occurring in natural language.
The development of predicate logic is usually attributed to Gottlob Frege, who is also credited as one of the founders of analytical philosophy, but the formulation of predicate logic most often used today is the firstorder logic presented in Principles of Theoretical Logic by David Hilbert and Wilhelm Ackermann in 1928. The analytical generality of the predicate logic allowed the formalisation of mathematics, and drove the investigation of set theory, allowed the development of Alfred Tarski's approach to model theory; it is no exaggeration to say that it is the foundation of modern mathematical logic.
Frege's original system of predicate logic was not first, but secondorder. Secondorder logic is most prominently defended (against the criticism of Willard Van Orman Quine and others) by George Boolos and Stewart Shapiro.
Modal logic
In languages, modality deals with the phenomenon that subparts of a sentence may have their semantics modified by special verbs or modal particles. For example, "We go to the games" can be modified to give "We should go to the games", and "We can go to the games"" and perhaps "We will go to the games". More abstractly, we might say that modality affects the circumstances in which we take an assertion to be satisfied.
The logical study of modality dates back to Aristotle, who was concerned with the alethic modalities of necessity and possibility, which he observed to be dual in the sense of De Morgan duality. While the study of necessity and possibility remained important to philosophers, little logical innovation happened until the landmark investigations of Clarence Irving Lewis in 1918, who formulated a family of rival axiomatizations of the alethic modalities. His work unleashed a torrent of new work on the topic, expanding the kinds of modality treated to include deontic logic and epistemic logic. The seminal work of Arthur Prior applied the same formal language to treat temporal logic and paved the way for the marriage of the two subjects. Saul Kripke discovered (contemporaneously with rivals) his theory of frame semantics which revolutionised the formal technology available to modal logicians and gave a new graphtheoretic way of looking at modality that has driven many applications in computational linguistics and computer science, such as dynamic logic.
Deduction and reasoning
The motivation for the study of logic in ancient times was clear, as we have described: it is so that we may learn to distinguish good from bad arguments, and so become more effective in argument and oratory, and perhaps also, to become a better person.
This motivation is still alive, although it no longer takes centre stage in the picture of logic; typically dialectical logic will form the heart of a course in critical thinking, a compulsory course at many universities, especially those that follow the American model.
Mathematical logic
Mathematical logic really refers to two distinct areas of research: the first is the application of the techniques of formal logic to mathematics and mathematical reasoning, and the second, in the other direction, the application of mathematical techniques to the representation and analysis of formal logic.
The earliest use of mathematics and geometry in relation to logic and philosophy goes back to the ancient Greeks such as Euclid, Plato, and Aristotle. Many other ancient and medieval philosophers applied mathematical ideas and methods to their philosophical claims.
The boldest attempt to apply logic to mathematics was undoubtedly the logicism pioneered by philosopherlogicians such as Gottlob Frege and Bertrand Russell: the idea was that mathematical theories were logical tautologies, and the programme was to show this by means to a reduction of mathematics to logic. The various attempts to carry this out met with a series of failures, from the crippling of Frege's project in his Grundgesetze by Russell's paradox, to the defeat of Hilbert's program by Gödel's incompleteness theorems.
Both the statement of Hilbert's program and its refutation by Gödel depended upon their work establishing the second area of mathematical logic, the application of mathematics to logic in the form of proof theory. Despite the negative nature of the incompleteness theorems, Gödel's completeness theorem, a result in model theory and another application of mathematics to logic, can be understood as showing how close logicism came to being true: every rigorously defined mathematical theory can be exactly captured by a firstorder logical theory; Frege's proof calculus is enough to describe the whole of mathematics, though not equivalent to it. Thus we see how complementary the two areas of mathematical logic have been.
If proof theory and model theory have been the foundation of mathematical logic, they have been but two of the four pillars of the subject. Set theory originated in the study of the infinite by Georg Cantor, and it has been the source of many of the most challenging and important issues in mathematical logic, from Cantor's theorem, through the status of the Axiom of Choice and the question of the independence of the continuum hypothesis, to the modern debate on large cardinal axioms.
Recursion theory captures the idea of computation in logical and arithmetic terms; its most classical achievements are the undecidability of the Entscheidungsproblem by Alan Turing, and his presentation of the ChurchTuring thesis. Today recursion theory is mostly concerned with the more refined problem of complexity classes — when is a problem efficiently solvable? — and the classification of degrees of unsolvability.
Philosophical logic
Philosophical logic deals with formal descriptions of natural language. Most philosophers assume that the bulk of "normal" proper reasoning can be captured by logic, if one can find the right method for translating ordinary language into that logic. Philosophical logic is essentially a continuation of the traditional discipline that was called "Logic" before the invention of mathematical logic. Philosophical logic has a much greater concern with the connection between natural language and logic. As a result, philosophical logicians have contributed a great deal to the development of nonstandard logics (e.g., free logics, tense logics) as well as various extensions of classical logic (e.g., modal logics), and nonstandard semantics for such logics (e.g., Kripke's technique of supervaluations in the semantics of logic).
Logic and the philosophy of language are closely related. Philosophy of language has to do with the study of how our language engages and interacts with our thinking. Logic has an immediate impact on other areas of study. Studying logic and the relationship between logic and ordinary speech can help a person better structure their own arguments and critique the arguments of others. Many popular arguments are filled with errors because so many people are untrained in logic and unaware of how to correctly formulate an argument.
Logic and computation
Logic cut to the heart of computer science as it emerged as a discipline: Alan Turing's work on the Entscheidungsproblem followed from Kurt Gödel's work on the incompleteness theorems, and the notion of general purpose computers that came from this work was of fundamental importance to the designers of the computer machinery in the 1940s.
In the 1950s and 1960s, researchers predicted that when human knowledge could be expressed using logic with mathematical notation, it would be possible to create a machine that reasons, or artificial intelligence. This turned out to be more difficult than expected because of the complexity of human reasoning. In logic programming, a program consists of a set of axioms and rules. Logic programming systems such as Prolog compute the consequences of the axioms and rules in order to answer a query.
Today, logic is extensively applied in the fields of artificial intelligence, and computer science, and these fields provide a rich source of problems in formal and informal logic. Argumentation theory is one good example of how logic is being applied to artificial intelligence. The ACM Computing Classification System in particular regards:
 Section F.3 on Logics and meanings of programs and F. 4 on Mathematical logic and formal languages as part of the theory of computer science: this work covers formal semantics of programming languages, as well as work of formal methods such as Hoare logic
 Boolean logic as fundamental to computer hardware: particularly, the system's section B.2 on Arithmetic and logic structures;
 Many fundamental logical formalisms are essential to section I.2 on artificial intelligence, for example modal logic and default logic in Knowledge representation formalisms and methods, Horn clauses in logic programming, and description logic.
Furthermore, computers can be used as tools for logicians. For example, in symbolic logic and mathematical logic, proofs by humans can be computerassisted. Using automated theorem proving the machines can find and check proofs, as well as work with proofs too lengthy to be written out by hand.
Argumentation theory
Argumentation theory is the study and research of informal logic, fallacies, and critical questions as they relate to every day and practical situations. Specific types of dialogue can be analyzed and questioned to reveal premises, conclusions, and fallacies. Argumentation theory is now applied in artificial intelligence and law.
Criticisms of logic
A number of philosophers have made major criticisms of logic in general, but most especially, perhaps, of formal logic: Nietzsche: "Logic, too, also rests on assumptions that do not correspond to anything in the real world"
Half a century before Nietzsche, Hegel was deeply critical of any simplified notion of the Law of NonContradiction. It was based on Leibniz's idea that this law of logic also requires a sufficient ground in order to specify from what point of view (or time) one says that something cannot contradict itself, a building for example both moves and does not move, the ground for the first is our solar system for the second the earth. In Hegelian dialectic the law of noncontradiction, of identity, itself relies upon difference and so is not independently assertable.
Hegel developed his own dialectic logic that extended Kant's transcendental logic but also brought it back to ground by assuring us that "neither in heaven nor in earth, neither in the world of mind nor of nature, is there anywhere such an abstract 'eitheror' as the understanding maintains. Whatever exists is concrete, with difference and opposition in itself"
Controversies in logic
Just as we have seen there is disagreement over what logic is about, so there is disagreement about what logical truths there are.
Bivalence and the law of the excluded middle
The logics discussed above are all " bivalent" or "twovalued"; that is, they are most naturally understood as dividing propositions into the true and the false propositions. Systems which reject bivalence are known as nonclassical logics.
In 1910 Nicolai A. Vasiliev rejected the law of excluded middle and the law of contradiction and proposed the law of excluded fourth and logic tolerant to contradiction. In the early 20th century Jan Łukasiewicz investigated the extension of the traditional true/false values to include a third value, "possible", so inventing ternary logic, the first multivalued logic.
Logics such as fuzzy logic have since been devised with an infinite number of "degrees of truth", represented by a real number between 0 and 1.
Intuitionistic logic was proposed by L.E.J. Brouwer as the correct logic for reasoning about mathematics, based upon his rejection of the law of the excluded middle as part of his intuitionism. Brouwer rejected formalisation in mathematics, but his student Arend Heyting studied intuitionistic logic formally, as did Gerhard Gentzen. Intuitionistic logic has come to be of great interest to computer scientists, as it is a constructive logic, and is hence a logic of what computers can do.
Modal logic is not truth conditional, and so it has often been proposed as a nonclassical logic. However, modal logic is normally formalised with the principle of the excluded middle, and its relational semantics is bivalent, so this inclusion is disputable. On the other hand, modal logic can be used to encode nonclassical logics, such as intuitionistic logic.
Bayesian probability can be interpreted as a system of logic where probability is the subjective truth value.
Implication: strict or material?
It is obvious that the notion of implication formalised in classical logic does not comfortably translate into natural language by means of "if… then…", due to a number of problems called the paradoxes of material implication.
The first class of paradoxes involves counterfactuals, such as "If the moon is made of green cheese, then 2+2=5", which are puzzling because natural language does not support the principle of explosion. Eliminating this class of paradoxes was the reason for C. I. Lewis's formulation of strict implication, which eventually led to more radically revisionist logics such as relevance logic.
The second class of paradoxes involves redundant premises, falsely suggesting that we know the succedent because of the antecedent: thus "if that man gets elected, granny will die" is materially true if granny happens to be in the last stages of a terminal illness, regardless of the man's election prospects. Such sentences violate the Gricean maxim of relevance, and can be modelled by logics that reject the principle of monotonicity of entailment, such as relevance logic.
Tolerating the impossible
Closely related to questions arising from the paradoxes of implication comes the radical suggestion that logic ought to tolerate inconsistency. Relevance logic and paraconsistent logic are the most important approaches here, though the concerns are different: a key consequence of classical logic and some of its rivals, such as intuitionistic logic, is that they respect the principle of explosion, which means that the logic collapses if it is capable of deriving a contradiction. Graham Priest, the main proponent of dialetheism, has argued for paraconsistency on the grounds that there are in fact, true contradictions.
Is logic empirical?
What is the epistemological status of the laws of logic? What sort of argument is appropriate for criticising purported principles of logic? In an influential paper entitled "Is logic empirical?" Hilary Putnam, building on a suggestion of W.V. Quine, argued that in general the facts of propositional logic have a similar epistemological status as facts about the physical universe, for example as the laws of mechanics or of general relativity, and in particular that what physicists have learned about quantum mechanics provides a compelling case for abandoning certain familiar principles of classical logic: if we want to be realists about the physical phenomena described by quantum theory, then we should abandon the principle of distributivity, substituting for classical logic the quantum logic proposed by Garrett Birkhoff and John von Neumann.
Another paper by the same name by Sir Michael Dummett argues that Putnam's desire for realism mandates the law of distributivity. Distributivity of logic is essential for the realist's understanding of how propositions are true of the world in just the same way as he has argued the principle of bivalence is. In this way, the question, "Is logic empirical?" can be seen to lead naturally into the fundamental controversy in metaphysics on realism versus antirealism.