% The exponential function as the sum of its Taylor series
function main()
% KSmrq's colors
red = [0.867 0.06 0.14];
blue = [0, 129, 205]/256;
green = [0, 200, 70]/256;
yellow = [254, 194, 0]/256;
white = 0.99*[1, 1, 3];
% Set up the grid and other parameters
N = 100;
A = -3; B = 3;
X = linspace(A, B, N);
Y = exp(X);
D = max(Y); C = -0.2*D;
% plot the frames
Sum = 0*X; Term = 0*X+1;
num_frames = 8;
for j=0:num_frames
Sum = Sum+Term;
Term = Term.*X/(j+1);
% Set up the figure
lw = 3; % linewidth
fs = 20; % font size
figure(1); clf; set(gca, 'fontsize', fs);
hold on; grid on;
set(gca, 'DataAspectRatio', [1 3 1]); % aspect ratio
plot_axes (A, B, C, D, lw/1.3);
plot(X, Sum, 'colour', blue, 'linewidth', lw);
plot(X, Y, 'colour', red, 'linewidth', lw);
axis([A, B, C, D]);
text_str = sprintf('{\\it n}=%d', j)
H= text (1.2, 18, text_str, 'fontsize', floor(1.2*fs))
frame=sprintf('Frame%d.eps', 1000+j);
disp(frame)
saveas(gcf, frame, 'psc2');
end
% Convert to animation with the command
% convert -antialias -loop 10000 -delay 100 -compress LZW Frame100* Exp_series.gif
function plot_axes (A, B, C, D, lw)
black = [0, 0, 0];
plot([A B], [0, 0], 'linewidth', lw, 'colour', black);
plot([0, 0], [C, D], 'linewidth', lw, 'colour', black);